Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ismail Ijjaali and James A. Ibers*
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail:
ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{Se}-\mathrm{Se})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.103$
Data-to-parameter ratio $=24.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

An ordered polymorph of copper trisamarium hexaselenide, $\mathrm{CuSm}_{3} \mathrm{Se}_{6}$

An ordered polymorph of $\mathrm{CuSm}_{3} \mathrm{Se}_{6}$ crystallizes in the monoclinic space group $P 2_{1} / m$. The structure, which contains both monoselenide $\left(\mathrm{Se}^{2-}\right)$ and diselenide $\left(\mathrm{Se}_{2}{ }^{2-}\right)$ units, comprises a three-dimensional network built from SmSe_{8} polyhedra and distorted CuSe_{4} tetrahedra.

Comment

The $\mathrm{CuSm}_{3} \mathrm{Se}_{6}$ polymorph reported here crystallizes in the monoclinic space group $P 2_{1} / m$ in a cell of dimensions $a=$ 7.1357 (10) $\AA, \quad b=16.986$ (3) $\AA, c=7.8957$ (12) $\AA, \quad \beta=$ $90.585(2)^{\circ}$ and $V=957.0$ (2) \AA^{3} at 153 K . The cell lengths are remarkably close to those previously reported (Strobel \& Schleid, 2003) for orthorhombic $\mathrm{CuSm}_{3} \mathrm{Se}_{6}[a=7.0953$ (6) \AA, b $=7.8391$ (7) $\AA, c=16.8998$ (9) \AA and $V=939.98$ (13) \AA^{3}, presumably determined at 298 K]. The present structure is ordered; the latter structure, which crystallizes in the orthorhombic space group Pbcm , has Cu disordered over two sites. Otherwise, the metrical details of the two structures are similar. Differences in synthetic routes, rather than the temperature of data collection, are probably the reason for the difference in the crystallographic symmetry of the two structures.

Views of the monoclinic structure and asymmetric unit are given in Figs. 1 and 2, respectively. The structure contains diselenide $\mathrm{Se}_{2}{ }^{2-}$ units, with $\mathrm{Se}-\mathrm{Se}$ distances of 2.479 (2) and 2.494 (2) A. Consequently, the formula of the compound may be written as $\mathrm{CuSm}_{3} \mathrm{Se}_{4}\left[\mathrm{Se}_{2}\right]$ and charge balance is achieved with Cu^{+}and Sm^{3+}. Each of the four independent Sm atoms is formally eight-coordinate, with $\mathrm{Sm}-\mathrm{Se}$ distances ranging

Figure 1
The structure of $\mathrm{CuSm}_{3} \mathrm{Se}_{6}$, viewed down [001]. The smallest circles are Cu , the intermediate circles are Sm , and the largest circles are Se atoms.

Received 15 June 2004 Accepted 28 June 2004 Online 9 July 2004

Figure 2
The view of the asymmetric unit of $\mathrm{CuSm}_{3} \mathrm{Se}_{6}$, with displacement ellipsoids drawn at the 90% probability level.
from 2.8381 (16) to 3.1536 (11) \AA. The coordination about atoms Sm 1 and Sm 2 can be described somewhat subjectively as square antiprismatic and bicapped trigonal prismatic, respectively. The coordination about atoms Sm 3 and Sm 4 , each of which lies on a mirror plane, can be considered octahedral if the diselenide units are replaced by their centers. The Cu atom is pseudo-tetrahedrally coordinated by four Se atoms, with $\mathrm{Cu}-\mathrm{Se}$ distances ranging from 2.384 (2) to 2.608 (2) Å.

Experimental

Dark red square needles of $\mathrm{CuSm}_{3} \mathrm{Se}_{6}$ were obtained from a solidstate reaction of 100 mg Sm (Alfa, 99.9%), 100 mg Cu (Aldrich, 99.999%), and 100 mg of Se (Aldrich, 99.5%). The reactants were loaded into a fused-silica tube under an argon atmosphere in a glovebox. The tube was sealed under a 10^{-4} Torr atmosphere and then placed in a computer-controlled furnace. The sample was heated to 923 K over 48 h , kept at 923 K for 3 d , and then cooled at $70 \mathrm{~K} \mathrm{~h}^{-1}$ to room temperature. The tube was opened under argon, the contents were ground, about 300 mg of KBr were added, and the mixture was resealed in a second tube that was then evacuated. This tube was heated to 1173 K over a period of 30 h , kept at 1173 K for 42 h , then cooled to 963 K over a period of 99 h and then cooled to room temperature over a period of 6.5 h .

Crystal data

$\mathrm{CuSm}_{3} \mathrm{Se}_{6}$
$M_{r}=988.35$
Monoclinic, $P 2_{1} / m$
$a=7.1357$ (10) A
$b=16.986$ (3) A
$c=7.8957$ (12) \AA
$\beta=90.585(2)^{\circ}$
$V=957.0(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD
\quad diffractometer
ω scans
Absorption correction: numerical
face indexed $($ SHELXTL $)$
$\quad T_{\min }=0.029, T_{\max }=0.210$
11410 measured reflections

Bruker SMART 1000 CCD
ctometer

Absorption correction: numerical
face indexed (SHELXTL)
11410 measured reflections
$D_{x}=6.860 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4189 reflections
$\theta=2.6-29.0^{\circ}$
$\mu=43.07 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Needle, red
$0.24 \times 0.05 \times 0.04 \mathrm{~mm}$

2435 independent reflections
1976 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=29.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-22 \rightarrow 23$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.04 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$	$\quad+34 P]$
$w R\left(F^{2}\right)=0.103$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.05$	$(\Delta / \sigma)_{\max }=0.002$
2435 reflections	$\Delta \rho_{\max }=5.31 \mathrm{e}^{\circ} \AA^{-3}$
98 parameters	$\Delta \rho_{\min }=-3.74 \mathrm{e} \AA^{-3}$
	Extinction correction: SHELXTL
	Extinction coefficient: $0.00117(8)$

Table 1
Selected bond distances (\AA).

Sm1-Se1	2.9400 (12)	Sm3-Se1 ${ }^{\text {ii }}$	2.9969 (10)
$\mathrm{Sm} 1-\mathrm{Se} 2^{\text {i }}$	2.9606 (12)	Sm3-Se3 ${ }^{\text {ix }}$	3.0563 (12)
Sm1-Se6	2.9611 (8)	Sm3-Se3 ${ }^{\text {x }}$	3.0563 (12)
$\mathrm{Sm} 1-\mathrm{Se} 2^{\text {ii }}$	3.0512 (11)	Sm3-Se5	3.1047 (12)
Sm1-Se4	3.0643 (11)	Sm3-Se5 ${ }^{\text {ii }}$	3.1047 (12)
Sm1-Se3	3.0662 (11)	Sm4-Se6 ${ }^{\text {xi }}$	2.8368 (16)
Sm1-Se4 $4^{\text {iii }}$	3.0909 (11)	Sm4-Se7	2.8426 (16)
Sm1-Se5	3.1062 (11)	Sm4-Se2 ${ }^{\text {xii }}$	2.9956 (10)
$\mathrm{Sm} 2-\mathrm{Se} 7^{\text {iv }}$	2.9300 (8)	Sm4-Se2 ${ }^{\text {iv }}$	2.9957 (10)
Sm2-Se2	2.9676 (12)	Sm4-Se5	3.0374 (12)
$\mathrm{Sm} 2-\mathrm{Se}^{\text {v }}$	2.9682 (12)	Sm4-Se5 ${ }^{\text {ii }}$	3.0374 (12)
$\mathrm{Sm} 2-\mathrm{Se} 4^{\text {ii }}$	3.0263 (11)	Sm4-Se3	3.1320 (12)
$\mathrm{Sm} 2-\mathrm{Se} 5^{\text {vi }}$	3.0544 (11)	Sm4-Se3 ${ }^{\text {ii }}$	3.1320 (12)
Sm2-Se3 ${ }^{\text {vii }}$	3.0667 (11)	$\mathrm{Cu}-\mathrm{Se}^{2}{ }^{\text {i }}$	2.3840 (18)
Sm2-Se4 ${ }^{\text {vi }}$	3.0920 (11)	$\mathrm{Cu}-\mathrm{Se} 4^{\text {iii }}$	2.4063 (18)
Sm2-Se1 ${ }^{\text {ii }}$	3.1536 (11)	$\mathrm{Cu}-\mathrm{Se} 1^{\text {xiii }}$	2.516 (2)
Sm3-Se7 ${ }^{\text {viii }}$	2.8381 (16)	$\mathrm{Cu}-\mathrm{Se}^{\text {xiv }}$	2.608 (2)
Sm3-Se6	2.8461 (16)	$\mathrm{Se} 3-\mathrm{Se} 3{ }^{\text {ii }}$	2.479 (2)
Sm3-Se1	2.9968 (10)	$\mathrm{Se} 5-\mathrm{Se} 5^{\text {ii }}$	2.494 (2)

Symmetry codes: (i) $-x, y-\frac{1}{2}, 1-z$; (ii) $x, \frac{1}{2}-y, z$; (iii) $1-x,-y, 1-z$; (iv) $1-x, 1-y, 1-z$; (v) $-x, \frac{1}{2}+y,-z$; (vi) $1-x, \frac{1}{2}+y,-z$; (vii) $1-x, \frac{1}{2}+y, 1-z$; (viii) $x-1, y, z-1$; (ix) $x, y, z-1$; (x) $x, \frac{1}{2}-y, z-1 ;$ (xi) $1+x, y, z$; (xii) $1-x, y-\frac{1}{2}, 1-z$; (xiii) $x, y, 1+z$; (xiv) $-x,-y, 1-z$.

The symmetry of the diffraction pattern is monoclinic, not orthorhombic. The highest residual electron density of $5.3 \mathrm{e} \AA^{-3}$ is $1.17 \AA$ from the Cu site; the second highest residual electron density of $3.1 \mathrm{e} \AA^{-3}$ is $0.95 \AA$ from this same site. The deepest hole of $-3.7 \mathrm{e} \AA^{-3}$ is $0.64 \AA$ from the Cu site. The Cu atom displays a moderately large value of U^{22} of $0.0418(10) \AA^{2}$. Clearly, there is some disorder around the Cu site. However, the height of the Cu peak itself is $60.1 \mathrm{e} \AA^{-3}$. Therefore, any disorder of the Cu -atom position is slight.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported by US National Science Foundation grant DMR00-96676. Use was made of the Central Facilities supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

References

Bruker (2003). SMART (Version 5.054) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SHELXTL for DOS/Windows/NT. Version 6.13. Bruker AXS Inc., Madison, Wisconsin, USA.
Strobel, S. \& Schleid, T. (2003). J. Solid State Chem. 171, 424-428.

